

Sanitation Systems and Technologies

Part 2: Treatment, Disposal and Resource Recovery

Kayla Coppens
Eawag-Sandec
Kayla.coppens@eawag.ch

10th October 2024

Today's lecturer:

Education:

PhD Env. Sciences (UniGE - Ongoing)

MSc Env. Sciences (UniGe)

BSc Biochemistry (USA-University of

Wisconsin)

Experience:

Aneco VaLoo

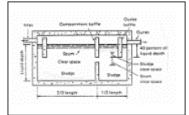
Circular Sanitation Network Switzerland Réseau suisse pour un assainissement circulaire Netzwerk für kreislauffähige Sanitärsysteme Schweiz

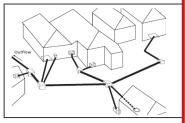
Rules of the game

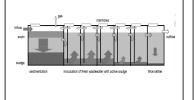
- Put on your creative hats and your logical hats
- Answer each question group discussion allowed
- Incentives for Correct answers or Funny answers

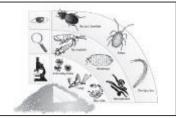
From last week:

User Interface


Collection and Storage / Treatment


Conveyance


(Semi-) Centralised Treatment


Use and / or Disposal

- Dry Toilet
- Urine DivertingDry Toilet (UDDT)
- Urinal
- Pour Flush Toilet
- Cistern FlushToilet
- Urine Diverting Flush Toilet

- Urine StorageTank / Container
- Single Pit
- Single Ventilated Improved Pit (VIP)
- Double Ventilated Improved Pit (VIP)
- o Fossa Alterna
- Twin Pits for Pour Flush
- Dehydr. Vaults
- Composting Chamber
- Septic Tank
- o Etc.

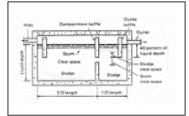
- o Jerry can / Tank
- Human-Powered Emptying and Transport
- MotorizedEmptying andTransport
- Simplified Sewer
- Solids-Free Sewer
- Conventional Gravity Sewer
- Transfer Station (Holding Tank)

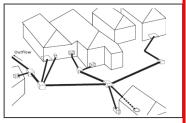
- Anaerobic Baffled Reactor (ABR)
- Anaerobic Filter
- WasteStabilizationPonds
- Aerated Pond
- Constructed Wetland
- Trickling Filter
- Activated Sludge
- Drying Beds
- Co-composting
- Biogas Reactor
- o Etc.

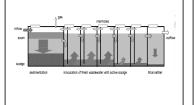
- Fill and Cover / Arborloo
- Applic. of Urine
- Application of Dehydr. Faeces / Compost/Sludge
- Irrigation
- Soak Pit
- o Leach Field
- o Fish Pond
- Floating PlantPond
- Water Disposal / Groundwater Recharge
- Surface Disposal
- Biogas Combust.

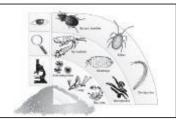
Today:

User Interface


Storage


Conveyance


(Semi-) Centralised Treatment

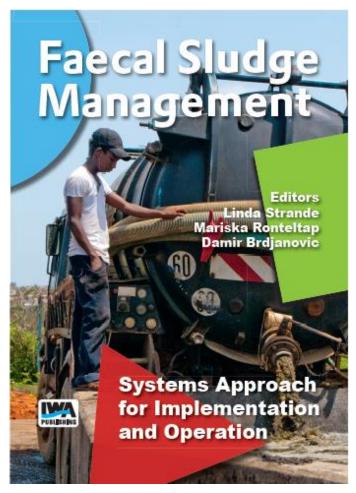

Use and / or Disposal

- Dry Toilet
- Urine DivertingDry Toilet (UDDT)
- Urinal
- o Pour Flush Toilet
- Cistern FlushToilet
- Urine DivertingFlush Toilet

- Urine Storage Tank / Container
- Single Pit
- Single Ventilated Improved Pit (VIP)
- Double Ventilated Improved Pit (VIP)
- o Fossa Alterna
- Twin Pits for Pour Flush
- Dehydr. Vaults
- Composting Chamber
- Septic Tank
- o Etc.

- o Jerry can / Tank
- Human-Powered Emptying and Transport
- MotorizedEmptying andTransport
- Simplified Sewer
- Solids-Free Sewer
- Conventional Gravity Sewer
- Transfer Station (Holding Tank)

- Anaerobic Baffled Reactor (ABR)
- Anaerobic Filter
- WasteStabilizationPonds
- Aerated Pond
- ConstructedWetland
- Trickling Filter
- Activated Sludge
- **Drying Beds**
- Co-composting
- Biogas Reactor
- o Etc.

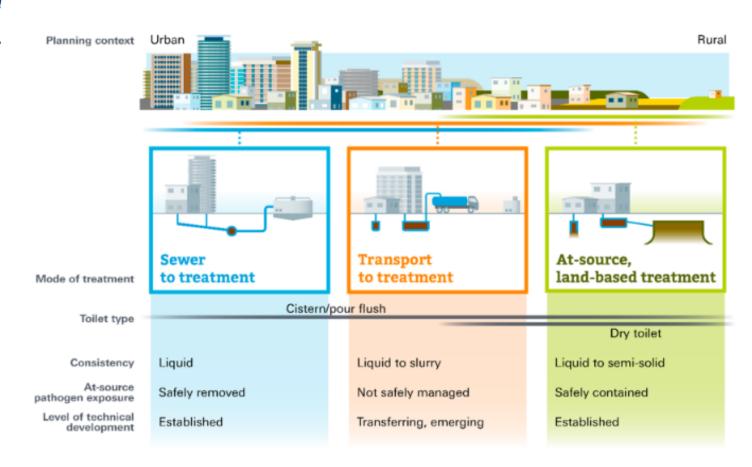

- Fill and Cover / Arborloo
- Applic. of Urine
- Application of Dehydr. Faeces / Compost/Sludge
- Irrigation
- Soak Pit
- o Leach Field
- o Fish Pond
- Floating PlantPond
- Water Disposal / Groundwater Recharge
- Surface Disposal
- Biogas Combust.

Learning objectives

- Understand and describe the difference between faecal sludge, wastewater and excreta
- Explain the Engineering Design Approach for faecal sludge management
- Be familiar with resource recovery products and treatment technologies associated with them
- Explain the treatment objectives of faecal sludge treatment and link them to treatment technologies.

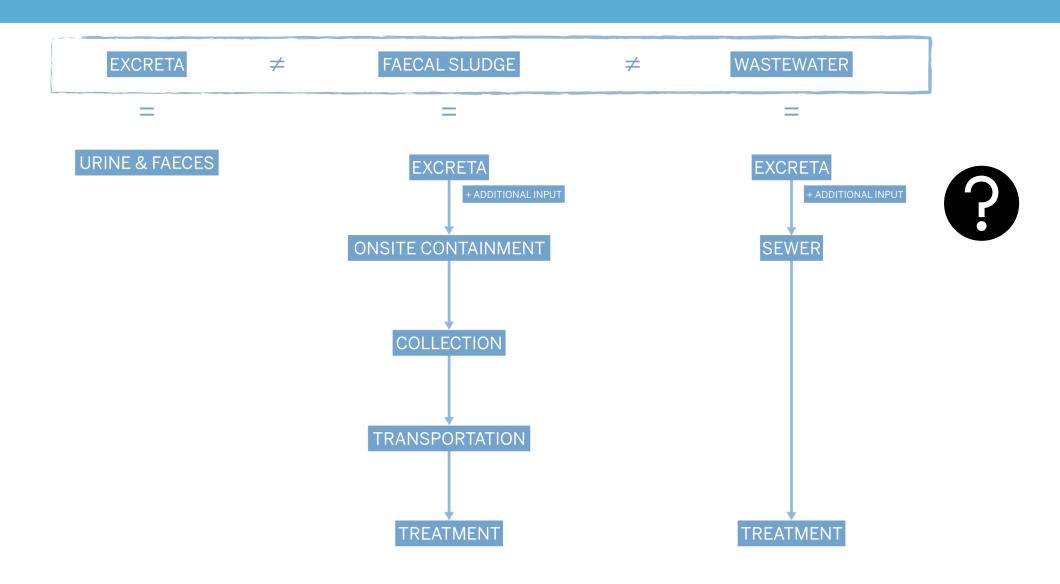
www.sandec.ch/fsm_book

Terminology: What is faecal sludge?



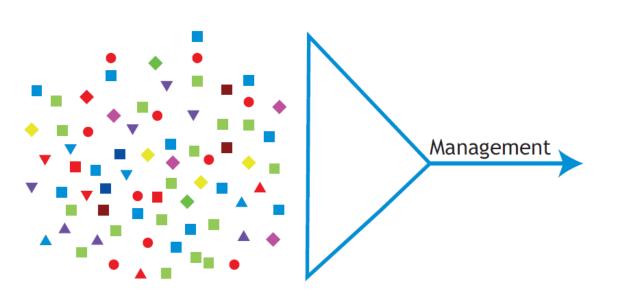
pubs.acs.org/est

Urban Sanitation: New Terminology for Globally Relevant Solutions?


Published as part of the Environmental Science & Technology virtual special issue "Accelerating Environmental Research to Achieve Sustainable Development Goals".

Linda Strande,* Barbara Evans, Marcos von Sperling, Jamie Bartram, Hidenori Harada, Anne Nakagiri, and Viet-Anh Nguyen

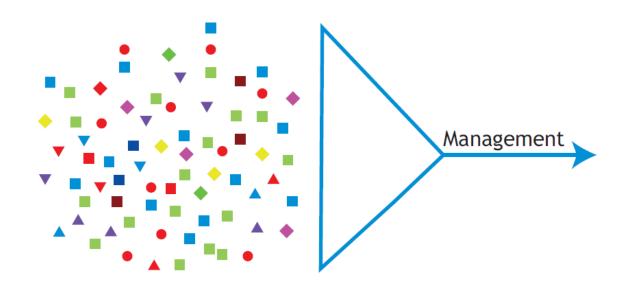
Terminology: What is faecal sludge?


Wastewater versus faecal sludge

Wastewater

Management

Faecal sludge



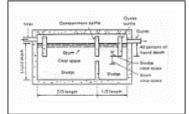
Characteristics of Faecal Sludge

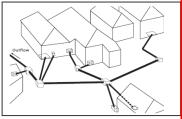
Quantities and Qualities are highly variable

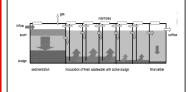
- Unknown information:
 - Collection & storage technology
 - Number of users connected
 - Time stored before arriving to treatment
- No homogenization during transport, as occurs in sewered systems. Sludge arrives batch-wise
- Varying infiltration rates changing water content in faecal sludge
- Amount of greywater
- Emptying method
- Climate
- Other solid wastes

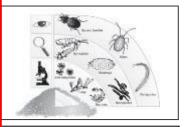
Treatment Technologies

User Interface


Storage


Conveyance


(Semi-) Centralised Treatment


Use and / or Disposal

- Dry Toilet
- Urine DivertingDry Toilet (UDDT)
- Urinal
- o Pour Flush Toilet
- Cistern FlushToilet
- Urine DivertingFlush Toilet

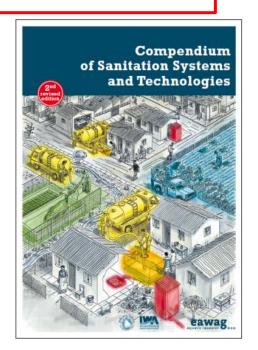
- Urine Storage Tank / Container
- o Single Pit
- Single Ventilated Improved Pit (VIP)
- Double Ventilated Improved Pit (VIP)
- o Fossa Alterna
- Twin Pits for Pour Flush
- Dehydr. Vaults
- Composting Chamber
- Septic Tank
- o Etc.

- o Jerry can / Tank
- Human-Powered Emptying and Transport
- MotorizedEmptying andTransport
- Simplified Sewer
- Solids-Free Sewer
- Conventional Gravity Sewer
- Transfer Station (Holding Tank)

- Anaerobic Baffled Reactor (ABR)
- Anaerobic Filter
- WasteStabilizationPonds
- Aerated Pond
- ConstructedWetland
- Trickling Filter
- Activated Sludge
- **Drying Beds**
- Co-composting
- Biogas Reactor
- o Etc.

- Fill and Cover / Arborloo
- o Applic. of Urine
- Application of Dehydr. Faeces / Compost/Sludge
- Irrigation
- o Soak Pit
- Leach Field
- o Fish Pond
- Floating PlantPond
- Water Disposal / Groundwater Recharge
- Surface Disposal
- Biogas Combust.

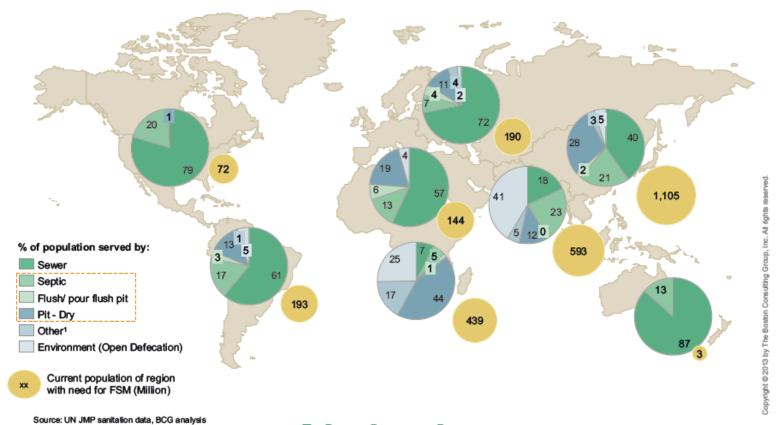
Treatment Technologies


For Wastewater

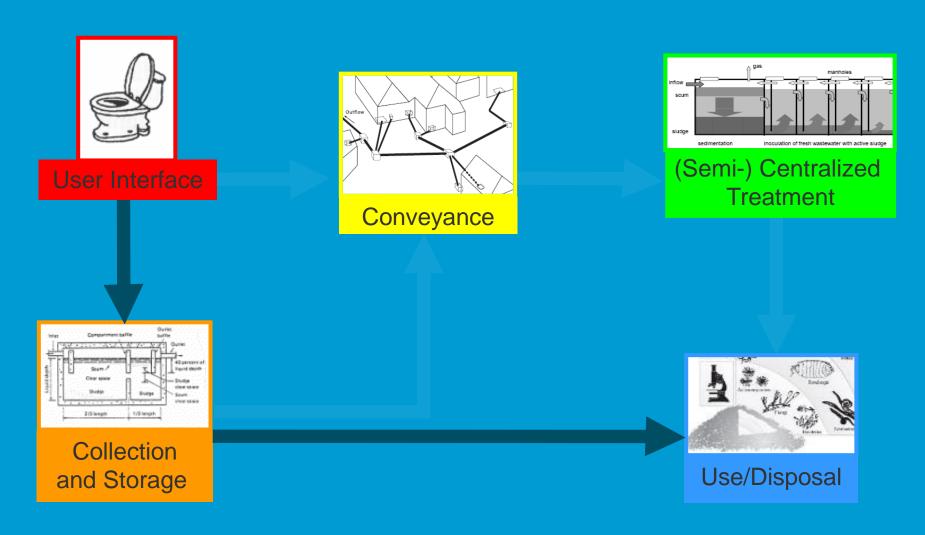
- T.1 Settler
- T.2 Imhoff Tank
- T.3 Anaerobic Baffled Reactor (ABR)
- T.4 Anaerobic Filter
- T.5 Waste Stabilization Ponds (WSP)
- T.6 Aerated Pond
- T.7 Free-Water Surface Constructed Wetland
- T.8 Horizontal Subsurface Flow constructed Wetland
- T.9 Vertical Flow constructed Wetland
- T.10 Trickling filter
- T.11 Upflow Anaerobic Sludge blanket Reactor (UASB)
- T.12 Activated Sludge

For Fecal Sludge

- T.13 Sedimentations / Thickening Ponds
- T.14 Unplanted Drying Beds
- T.15 Planted Drying Beds
- T.16 Co-composting
- T.17 Biogas Reactor



Global relevance?


- Sanitation needs of 2.7 billion people worldwide are met by onsite technologies.
- Majority of onsite systems are not safely managed (61–72% in Africa, 62–68% in LAC, 100% in SE Asia, and 5–100% in W. Pacific)

Challenges pushing towards decentralized solutions:

- Rapid urbanization & densification
- Expenses
- Resource Recovery

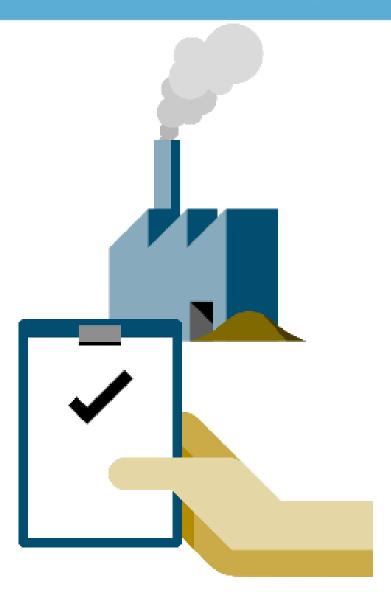
What happens when decentralized systems are not managed properly?

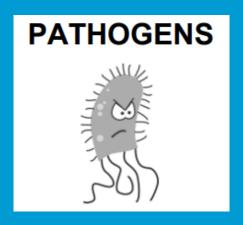
This shit is not working...

Yaoundé Cameroon

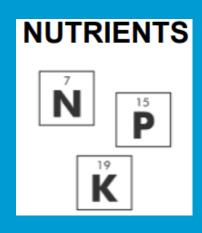
What happens when the pits are full?

Engineering Design Approach

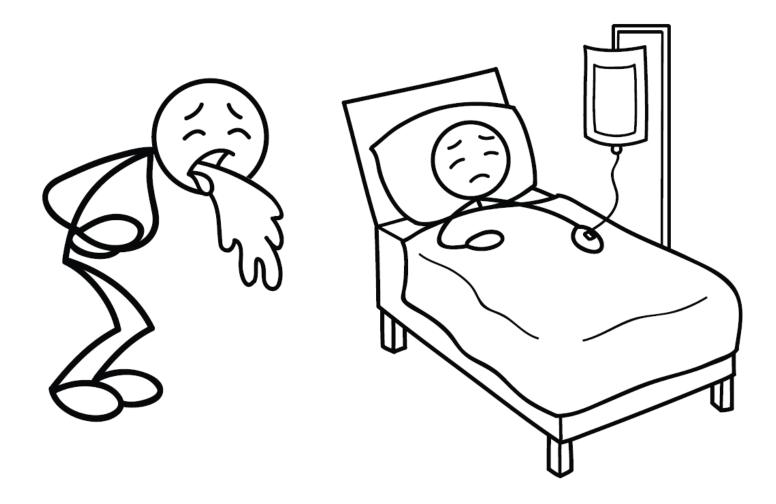


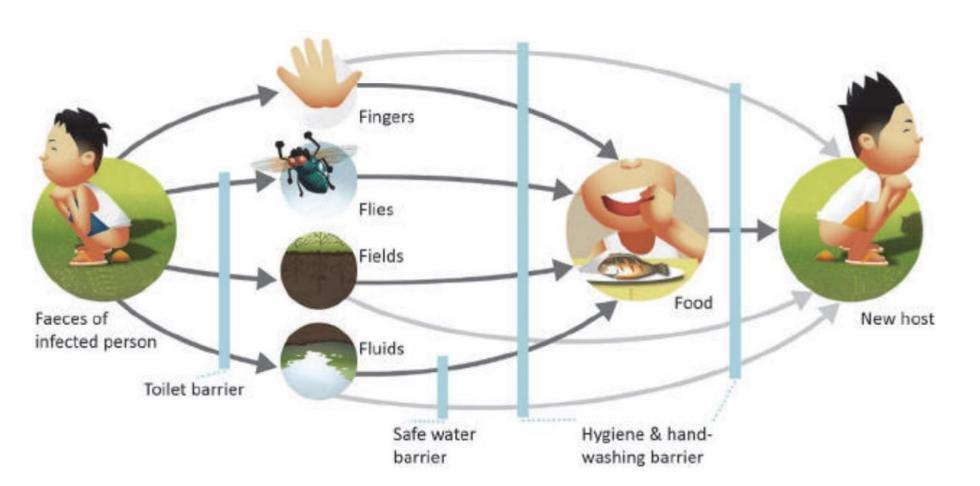

Engineering Design Approach

Step 1: Treatment objectives & Resource Recovery

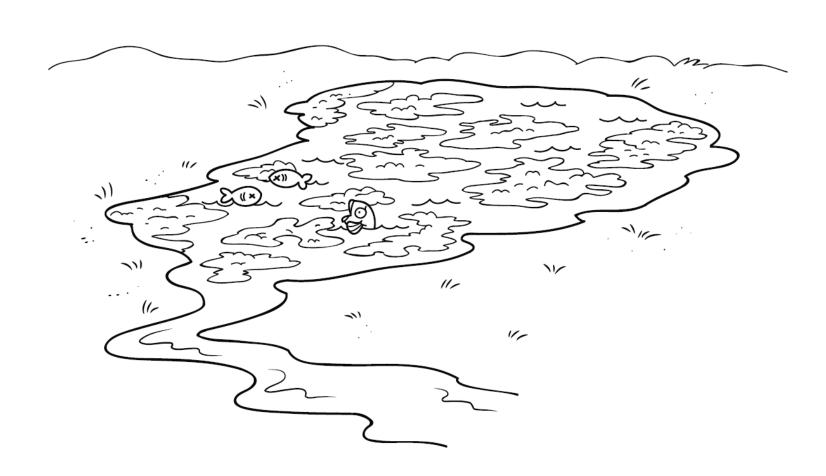


Treatment Objectives Activity



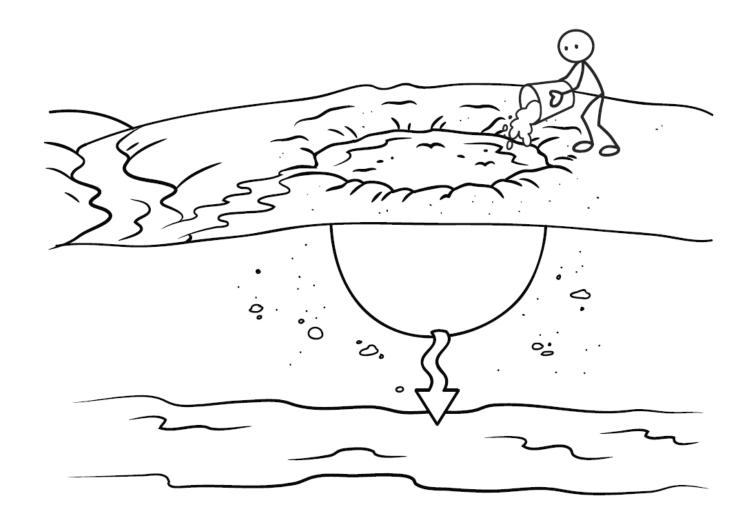

What component will make people sick?

Transmission pathways of pathogens

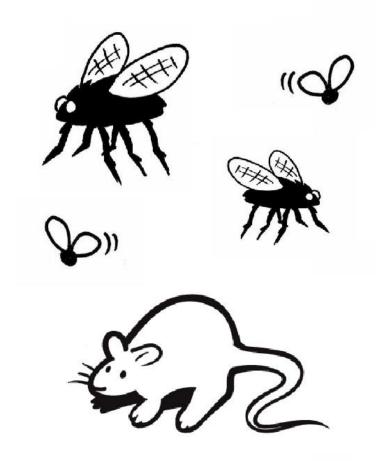


What component can cause eutrophication?

What component would make faecal sludge smell badly?


What component makes faecal sludge heavy and voluminous to manage?

What component will increase the risk of water contamination?



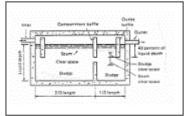
What component would attract vectors such as flies and rats?

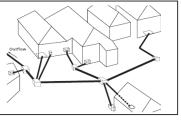
- 1. Pathogen inactivation
- 2. Stabilization
- 3. Dewatering
- 4. Nutrient management

The ultimate goal of faecal sludge management: protection of public and environmental health

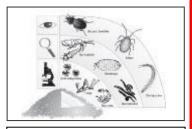
Treatment Technologies

User Interface


Storage


Conveyance


(Semi-) Centralised Treatment


Use and / or Disposal

- Dry Toilet
- Urine DivertingDry Toilet (UDDT)
- Urinal
- o Pour Flush Toilet
- Cistern FlushToilet
- Urine DivertingFlush Toilet

- Urine Storage Tank / Container
- Single Pit
- Single Ventilated Improved Pit (VIP)
- Double Ventilated Improved Pit (VIP)
- o Fossa Alterna
- Twin Pits for Pour Flush
- Dehydr. Vaults
- Composting Chamber
- Septic Tank
- o Etc.

- Jerry can / Tank
- Human-Powered Emptying and Transport
- Motorized Emptying and Transport
- Simplified Sewer
- Solids-Free Sewer
- Conventional Gravity Sewer
- Transfer Station (Holding Tank)

- Anaerobic Baffled Reactor (ABR)
- Anaerobic Filter
- WasteStabilizationPonds
- Aerated Pond
- ConstructedWetland
- Trickling Filter
- Activated Sludge
- Drying Beds
- Co-composting
- Biogas Reactor
- o Etc.

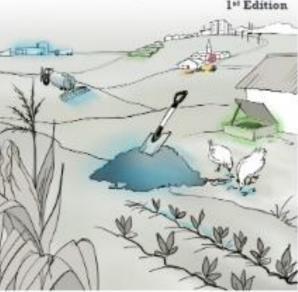
- Fill and Cover / Arborloo
- Applic. of Urine
- Application of Dehydr. Faeces / Compost/Sludge
- Irrigation
- Soak Pit
- o Leach Field
- o Fish Pond
- Floating PlantPond
- Water Disposal / Groundwater Recharge
- Surface Disposal
- Bioαas Combust.

Resource Recovery

Guide to Sanitation Resource Recovery Products & Technologies

Part 1: Reuse Products

Part 2: Treatment Technologies for Resource Recovery



https://www.susana.o rg/en/knowledgehub/resources-andpublications/library/de tails/4008#

Guide to Sanitation Resource Recovery **Products & Technologies**

A supplement to the Compendium of Sanitation Systems and Technologies

Ist Edition

Resource recovery options for faecal sludge

Resource	Treatment product	Product type
Energy	Solid fuel	Pellets, briquettes, powder
Energy	Gas fuel	Biogas
Energy	Electricity	Conversion of biogas, or gasification of solid fuel
Food	Protein	Black soldier flies, fish meal
Food	Animal fodder	Plants from drying beds, dried aquaculture plants
Food	Fish	Grown on effluent from faecal sludge treatment
Material	Building materials	Additive to bricks, road construction
Nutrients	Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual
Nutrients	Fertilizer ²	Pellets, powder
Nutrients	Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds
Water, nutrients	Reclaimed water	Effluent from faecal sludge treatment

¹ With different levels of pathogen removal, based on enduse

² Addition of NPK to fulfill nutrient needs of a fertilizer

³ No pathogen removal.

Designing for End-use / Resource Recovery

Factors influencing product production:

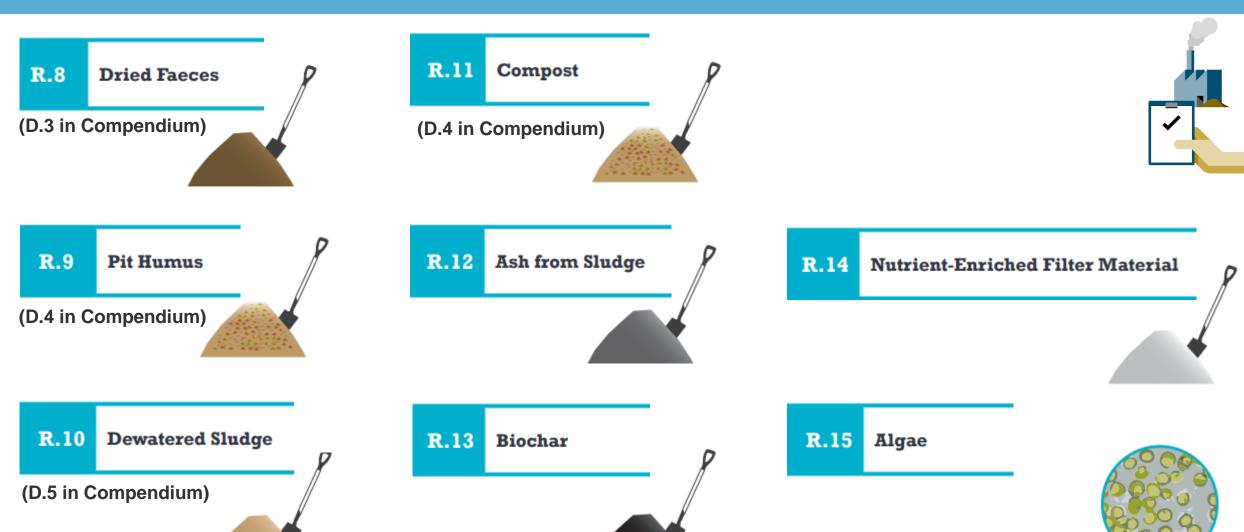
- Type, quality and costs of input material available
- Socio-cultural acceptance
- Local demands
- Legal aspects
- Availability of materials and equipment
- Availability of space
- Soil and groundwater characteristics
- Local knowledge and capacity

Designing for End-use / Resource Recovery

- No effluent standards / standards not enforced
- Revenues from FS treatment products could offset FS treatment costs
- Market for end products could help ensure sustainable operation
 - Markets for FS treatment end products are undeveloped

ecal Sludge Management – Highlights & Exercis

Resource recovery options for faecal sludge

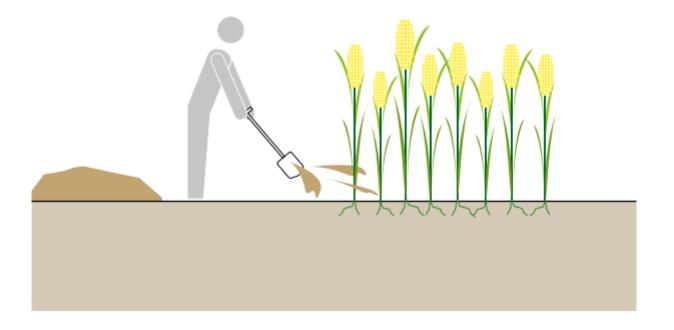


Resource	Treatment product	Product type
Energy	Solid fuel	Pellets, briquettes, powder
Energy	Gas fuel	Biogas
Energy	Electricity	Conversion of biogas, or gasification of solid fuel
Food	Protein	Black soldier flies, fish meal
Food	Animal fodder	Plants from drying beds, dried aquaculture plants
Food	Fish	Grown on effluent from faecal sludge treatment
Material	Building materials	Additive to bricks, road construction
Nutrients	Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual
Nutrients	Fertilizer ²	Pellets, powder
Nutrients	Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds
Water, nutrients	Reclaimed water	Effluent from faecal sludge treatment

Resource recovery – Soil Conditioner

© Guide to Sanitation Resource Recovery Products & Technologies

Resource recovery – Soil conditioner



Application of Pit Humus and Compost

Application Level:

Management Level:

Thousehold

Advantages:

- + Improves structure of soil
- + Reduces chemical fertilizer needs
- + Low costs
- + Low risk of pathogen transmission

Disadvantages

- Long maturation times
- Low social acceptance in some areas

Resource recovery options for faecal sludge

Treatment product	Product type
Solid fuel	Pellets, briquettes, powder
Gas fuel	Biogas
Electricity	Conversion of biogas, or gasification of solid fuel
Protein	Black soldier flies, fish meal
Animal fodder	Plants from drying beds, dried aquaculture plants
Fish	Grown on effluent from faecal sludge treatment
Building materials	Additive to bricks, road construction
Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual
Fertilizer ²	Pellets, powder
Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds
Reclaimed water	Effluent from faecal sludge treatment
	Gas fuel Electricity Protein Animal fodder Fish Building materials Soil conditioner ¹ Fertilizer ² Soil conditioner ³

Resource recovery – Solid fuels (Biofuels)

End products to be used as fuels:

Dried faecal sludge

Briquettes/pellets

Charcoal

Dewatering is Key!

Resource Recovery: Carbonized fuels

R.13 Bio

Biochar

Intended use: Soil conditioner, Water purification, Energy production Technical maturity: High Application level: * Household ** City ** Regional * Global Teatment technologies: T.27 Carbonisation

Advantages:

- + Can be used as a solid fuel (char) or soil conditioner (biochar)
- + Improves soil quality & structure
- + Carbon-neutral or carbon-negative

<u>Disadvantages</u>

(+Dry cleansing material)

(+Organics)

- Dust during soil application
- Sorption of pesticides and herbicides
- Nitrogen loss

Sludge Management – Highlights & Exercises

Resource recovery options for faecal sludge

Resource	Treatment product Product type				
Energy	Solid fuel	Pellets, briquettes, powder			
Energy	Gas fuel	Biogas			
Energy	Electricity	Conversion of biogas, or gasification of solid fuel			
Food	Protein	Black soldier flies, fish meal			
Food	Animal fodder	Plants from drying beds, dried aquaculture plants			
Food	Fish	Grown on effluent from faecal sludge treatment			
Material	Building materials	Additive to bricks, road construction			
Nutrients	Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual			
Nutrients	Fertilizer ²	Pellets, powder			
Nutrients	Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds			
Water, nutrients	Reclaimed water	Effluent from faecal sludge treatment			

Resource recovery – Gas Fuel

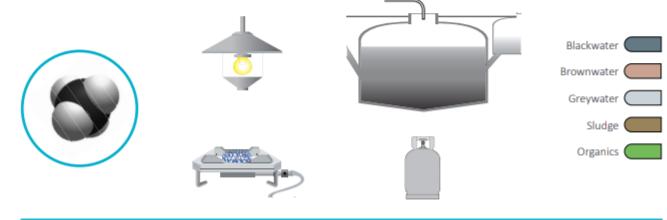
R.21

Biogas (D.13 in Compendium)

Intended use:

Heat, Electricity, Vehicle fuel

Technical maturity:


High

Application level:

Household

** City * Regional Global Treatment technologies:

(S.12 Biogas Reactor, T.11 Upflow Anaerobic Sludge Blanket Rector UASB, T.17 Biogas Reactor)

Compiled by: Tilley et al. (2014) and Swedish University of Agricultural Sciences (SLU)

Advantages:

- + Low-cost energy source from renewable ressources
- + Replaces fuel wood for cooking
- + Few operational skills and little maintenance required

<u>Disadvantages</u>

- Low storage time, low energy density
- Biogas lamps have lower efficiency
- Leaked / unburned methane is a GHG emission

de Management – Highlights & Exercises

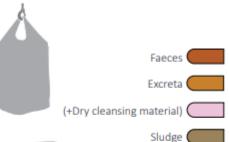
Resource recovery options for faecal sludge

Resource	Treatment product	Product type
Energy	Solid fuel	Pellets, briquettes, powder
Energy	Gas fuel	Biogas
Energy	Electricity	Conversion of biogas, or gasification of solid fuel
Food	Protein	Black soldier flies, fish meal
Food	Animal fodder	Plants from drying beds, dried aquaculture plants
Food	Fish	Grown on effluent from faecal sludge treatment
Material	Building materials	Additive to bricks, road construction
Nutrients	Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual
Nutrients	Fertilizer ²	Pellets, powder
Nutrients	Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds
Water, nutrients	Reclaimed water	Effluent from faecal sludge treatment

© Guide to Sanitation Resource Recovery Products & Technologies

Resource recovery – Animal Fodder

R.17


Black Soldier Fly Larvae

Intended use:	Application level:		Treatment technologies:		
Biomass (e.g., animal fodder, biofuels), Industrial use	**	Household City Regional Global	T.21 Black Soldier Fly Composting		
Technical maturity: Medium	***				

Compiled by: Swedish University of Agricultural Sciences (SLU)

Advantages:

- + Good source of protein and oil in animal feed
- + Easily dried for longer storage (55-75% volume reduction)
- + Can also be used as biofuel
- + Pesticides and mycotoxins are not accumulated in BSFLStabilization of organic matter.

Disadvantages

- Solid residue not pathogen free.
- May alter meat products
- Stringent rules about insects
 - In Europe, cannot give animal by-products to BSFL and cannot give BSFL as feed to other animals

udae Management – Highlights & Exercises

Resource recovery options for faecal sludge

Resource	Treatment product	Product type
Energy	Solid fuel	Pellets, briquettes, powder
Energy	Gas fuel	Biogas
Energy	Electricity	Conversion of biogas, or gasification of solid fuel
Food	Protein	Black soldier flies, fish meal
Food	Animal fodder	Plants from drying beds, dried aquaculture plants
Food	Fish	Grown on effluent from faecal sludge treatment
Material	Building materials	Additive to bricks, road construction
Nutrients	Soil conditioner ¹	Compost, pellets, digestate, black soldier fly residual
Nutrients	Fertilizer ²	Pellets, powder
Nutrients	Soil conditioner ³	Untreated sludge, dewatered sludge from drying beds
Water, nutrients	Reclaimed water	Effluent from faecal sludge treatment

Resource recovery – Reclaimed Water

R.19 Irrigation Water

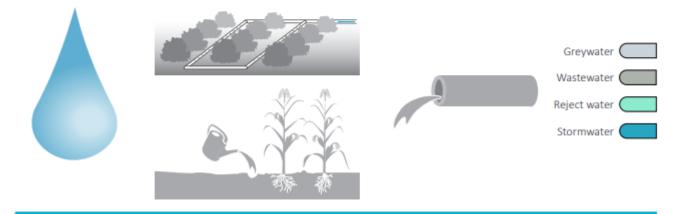
Intended use:

Irrigation

*** Household

** City

* Regional


High

** Global

** Global

** Global

** Regional

Compiled by: Tilley et al. (2014) and Swedish University of Agricultural Sciences (SLU)

Advantages:

- + Reduces depletion of groundwater and improves availability of drinking water
- + Low risk of pathogen transmission if water is properly treated
- + Low capital and operational costs depending on the design

<u>Disadvantages</u>

- Expert design and installation
- Drip irrigation normally required
- Risk of soil contamination
- Risk of groundwater contamination
- Social acceptance is low

Resource recovery - Reclaimed Water

R.3

High

Sanitised Blackwater

Intended use: Liquid fertiliser, Agricultural irrigation Liquid fertiliser, Agricultural irrigation ** Household ** City ** Regional ** Regional ** Global Treatment technologies: T.32 Ammonia Sanitisation/Urea Treatment, T.33 Lime Sanitisation

Compiled by: Swedish University of Agricultural Sciences (SLU)

Advantages:

- + Reduces depletion of groundwater and improves availability of drinking water
- + Reduced the need for fertilizer (Fertigation)
- + Low risk of pathogen transmission if water is properly treated
- + Low capital and operational costs depending on the design

Disadvantages

- Expert design and installation
- Drip irrigation normally required
- Risk of soil contamination
- Risk of groundwater contamination
- Social acceptance is low

Becovery Products & Technologies

Designing for End-use / Resource Recovery

Other potential resources:

(from Guide to Sanitation Resource Recovery Products and Technologies)

- Urine
 - Stored (R.1)
 - Concentrated (R.2)
 - Dry (R.6)
 - Struvite (R.7)
- Digestate (R.4)
- Macrophytes (R.16)
- Worms (R.18)
- Aquaculture (R.20)

End-uses without resource recovery:

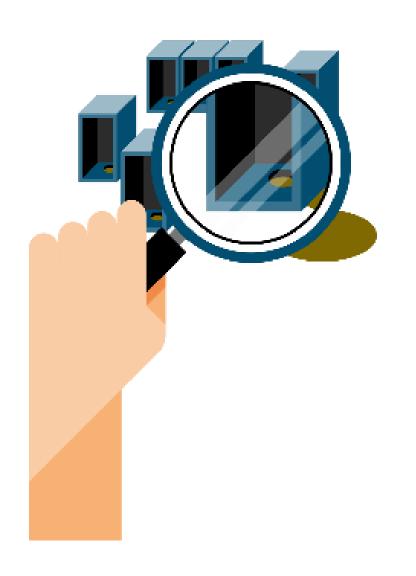
(from Compendium of Sanitation Systems and technologies)

- Soak pit (D.7)
- Leach field (D.8)
- Water discharge (D.11)
- Surface disposal (D.12)

Questions?

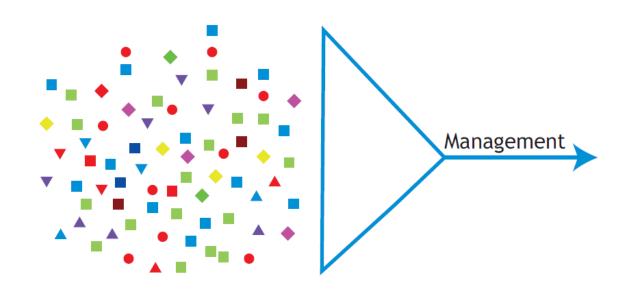
BREAK

Engineering Design Approach



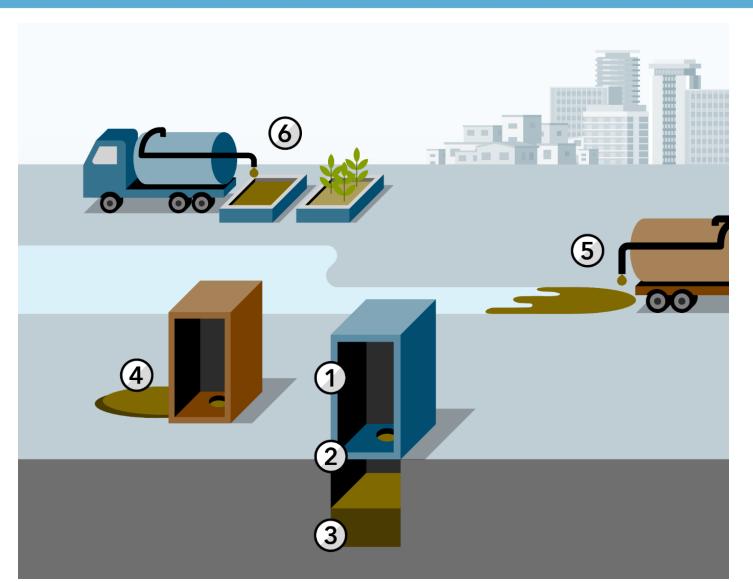
Engineering Design Approach

Step 2: Quantification and characterization of influent sludge



Reminder: Faecal Sludge is highly variable!

Variability of faecal sludge


Faecal sludge characteristics (Quality)

	рН	TSS (mg/L)	tCOD (mg/L)	sCOD (mg/L)	NH ₄ -N (mg/L)	COD/N ratio	Alkalinity (mmol HCO ₃ -/L)	Conductivity (mS/cm)
Fecal sludge	6.5-8	4,900-8,500	1,200-127,200	92-19,600	21-5,000	151/1 - 5/1	-	1.7-14.5
Fecal sludge supernatant	6.6-7.8	1-645	76-1,116	39-641	17-262	19/1-1/1.5	7.1-36.8	0.81-4.5
Primary effluent municipal wastewater	7-8	36-112	450-469	199-277	25-45	19/1-9/1	300-340	0.70-0.12

Quantities

- 2. Faecal sludge produced
- 3. Faecal sludge accumulated
- 4. Faecal sludge emptied, but not collected
- Faecal sludge collected, but not delivered to treatment plant
- 6. Faecal sludge treated

Q&Q

Contents lists available at ScienceDirect

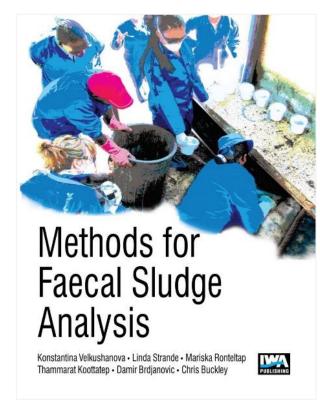
Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Research article

Methods to reliably estimate faecal sludge quantities and qualities for the design of treatment technologies and management solutions

Linda Strande^{a,*}, Lars Schoebitz^a, Fabian Bischoff^a, Daniel Ddiba^b, Francis Okello^b, Miriam Englund^a, Barbara J. Ward^a, Charles B. Niwagaba^b


Research Paper

© 2021 The Authors Journal of Water, Sanitation and Hygiene for Development | 11.3 | 2021

Research Paper

Methods for estimating quantities and qualities (Q&Q) of faecal sludge: field evaluation in Sircilla, India

Prerna Prasad, Nienke Andriessen MA, Anantha Moorthy, Amrita Das, Kayla Coppens, Rohini Pradeep and Linda Strande

a Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Sanitation, Water and Solid Waste for Development (Sandec), Überlandstrasse 133, 8600, Dübendorf, Switzerland

b Department of Civil and Environmental Engineering, College of Engineering, Design, Art and Technology (CEDAT), Makerere University, P.O. Box 7062, Kampala,

Massive Open Online Course (MOOC)

coursera.org/learn/faecalsludge

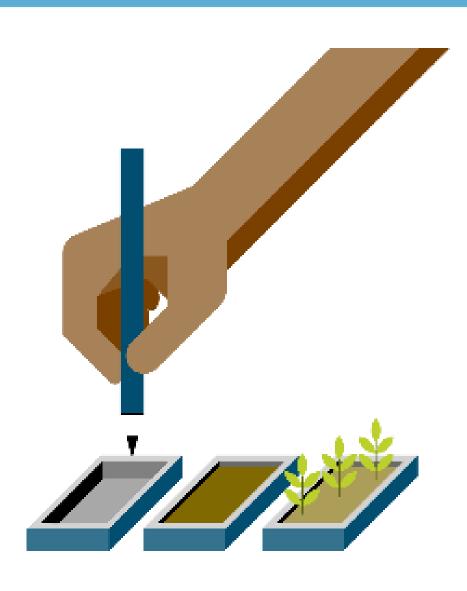
Quantities and Qualities (Q&Q) of Fecal Sludge – Theory

Introduction to FSM

Nienke Andriessen

https://www.youtube.com/watch?v=J9GsW2mCKXM

Engineering Design Approach

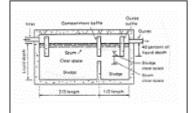


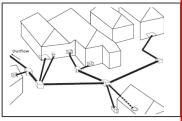
Engineering Design Approach

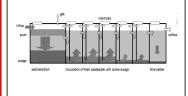
Step 3: Design of treatment technology

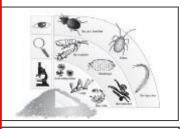
Treatment Technologies

User Interface


Storage

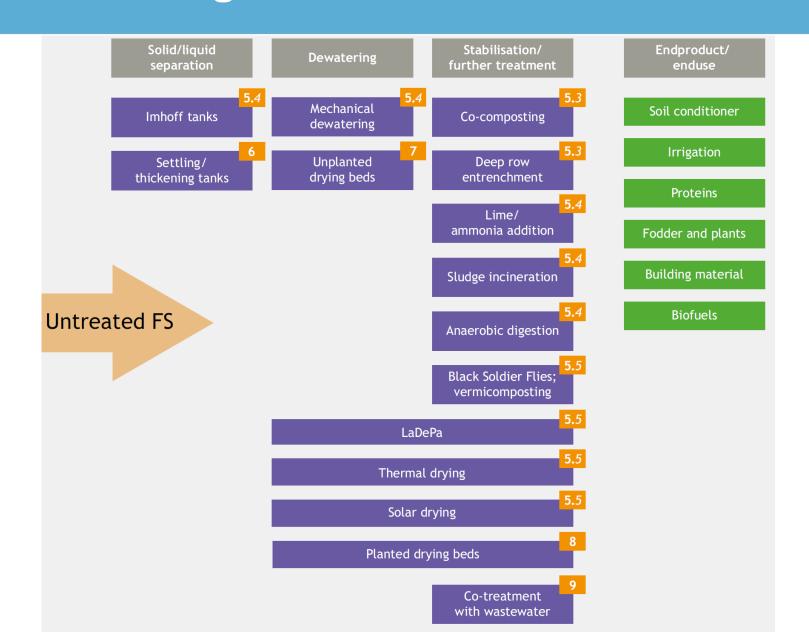

Conveyance


(Semi-) Centralised Treatment


Use and / or Disposal

- Dry Toilet
- Urine DivertingDry Toilet (UDDT)
- Urinal
- o Pour Flush Toilet
- Cistern FlushToilet
- Urine DivertingFlush Toilet

- Urine Storage Tank / Container
- Single Pit
- Single Ventilated Improved Pit (VIP)
- Double Ventilated Improved Pit (VIP)
- o Fossa Alterna
- Twin Pits for Pour Flush
- Dehydr. Vaults
- Composting Chamber
- Septic Tank
- o Etc.

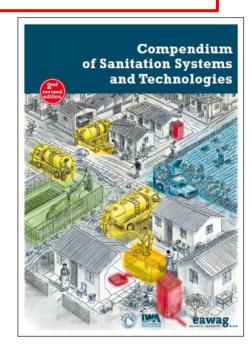

- o Jerry can / Tank
- Human-Powered Emptying and Transport
- MotorizedEmptying andTransport
- Simplified Sewer
- Solids-Free Sewer
- Conventional Gravity Sewer
- Transfer Station (Holding Tank)

- Anaerobic Baffled Reactor (ABR)
- Anaerobic Filter
- WasteStabilizationPonds
- Aerated Pond
- ConstructedWetland
- Trickling Filter
- Activated Sludge
- **Drying Beds**
- Co-composting
- Biogas Reactor
- o Etc.

- Fill and Cover / Arborloo
- o Applic. of Urine
- Application of Dehydr. Faeces / Compost/Sludge
- Irrigation
- o Soak Pit
- o Leach Field
- o Fish Pond
- Floating PlantPond
- Water Disposal / Groundwater Recharge
- Surface Disposal
- Biogas Combust.

Treatment technologies

Treatment Technologies


For Wastewater

- T.1 Settler
- T.2 Imhoff Tank
- T.3 Anaerobic Baffled Reactor (ABR)
- T.4 Anaerobic Filter
- T.5 Waste Stabilization Ponds (WSP)
- T.6 Aerated Pond
- T.7 Free-Water Surface Constructed Wetland
- T.8 Horizontal Subsurface Flow constructed Wetland
- T.9 Vertical Flow constructed Wetland
- T.10 Trickling filter
- T.11 Upflow Anaerobic Sludge blanket Reactor (UASB)
- T.12 Activated Sludge

For Fecal Sludge

- T.13 Sedimentations / Thickening Ponds
- T.14 Unplanted Drying Beds
- T.15 Planted Drying Beds
- T.16 Co-composting
- T.17 Biogas Reactor

Resource Recovery

Guide to Sanitation Resource Recovery Products & Technologies

For Fecal Sludge

- T.20 Vermicomposting and Vermifiltration
- T.21 Black Soldier Fly Composting
- T.26 Incineration
- T.27 Carbonization
- T.28 Solar Drying

Treatment technologies

Pre-treatment

example: removal of oil, grease, sand or trash

Primary treatment: solid-liquid separation (dewatering)

example: a settling-thickening tank

 Secondary treatment: biological removal of organic matter, nutrients and remaining suspended solids

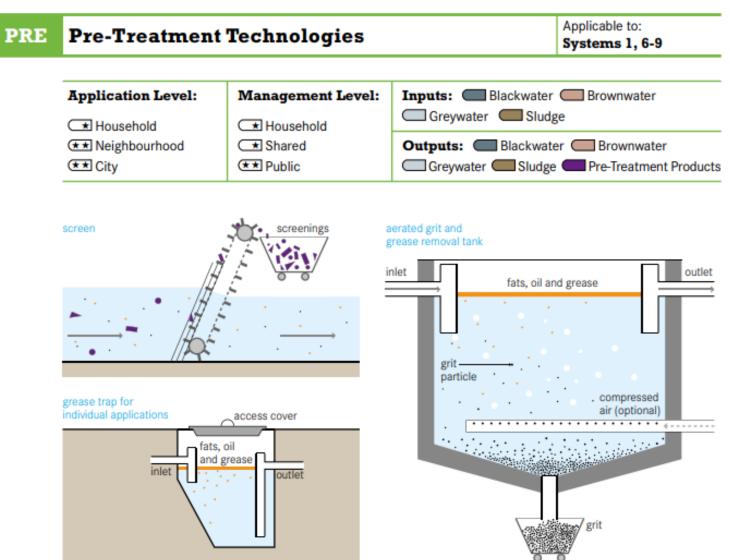
example: anaerobic digestion

 Post-treatment or tertiary treatment: final polishing example: removal of remaining pathogens, nutrients or micropollutants

Level of development

 Innovative: New technologies that are still in the pilot phase and need more research before large scale implementation.

 Transferring: Have been used for wastewater treatment, and are in the process of being adapted for faecal sludge



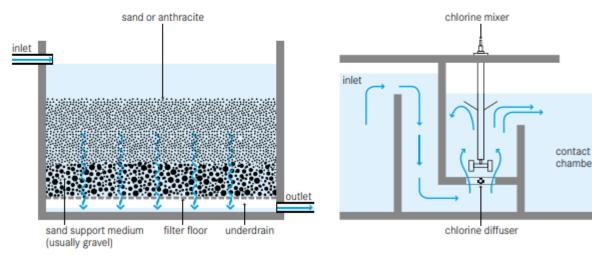
Established: Are established technologies for treating faecal sludge

os Svetems and Tachnologias

Pre-treatment

Advantages:

- + Relatively low capital and operating costs
- + Reduced risk of impairing subsequent Conveyance and/or Treatment technologies
- Higher lifetime and durability of sanitation hardware


Disadvantages

- Frequent maintenance required
- The removal of solids and grease is not pleasant

Tertiary Treatmetn & Disinfection

Applicable to: **Tertiary Filtration and Disinfection** Systems 1, 6-9 Application Level: **Management Level:** Inputs: Effluent ☐ Household Household ■ Neighbourhood ★ Shared Outputs: Effluent ** City ★★ Public

tertiary filtration (e.g., depth filtration)

disinfection (e.g., chlorination)

Advantages:

- + Additional removal of pathogens and/or chemical contaminants
- Allows for direct reuse of treated wastewater

Disadvantages

- Skills, Technology, spare parts and materials may not be locally available
- High capital and operating costs
- May require constant source of electricity or chemicals
- Continuous monitoring
- Filter materials need regular maintenance
- Chlorination / Ozonation can form toxic by-products

Exercise: Treatment technologies

Pre-treatment

example: removal of oil, grease, sand or trash

Primary treatment: solid-liquid separation (dewatering)

example: a settling-thickening tank

 Secondary treatment: biological removal of organic matter, nutrients and remaining suspended solids

example: anaerobic digestion

• Post-treatment or tertiary treatment: final polishing example: removal of remaining pathogens, nutrients or micropollutants

Treatment Technology Activity

Treatment Technology Activity Plenary

Treatment technologies - Summary

In general, often need several technologies in a particular order to effectively treat FS.

Examples:

- To compost sludge, it must first be dewatered
- Compost from vermicomposting cannot be directly applied to agricultural lands – first need to inactivate pathogens through co-composting
- For Briquettes, need to dewater and dry

Treatment technologies

Besides treatment objectives, treatment products and level of technology development, there are other factors which may influent the selection of treatment technologies

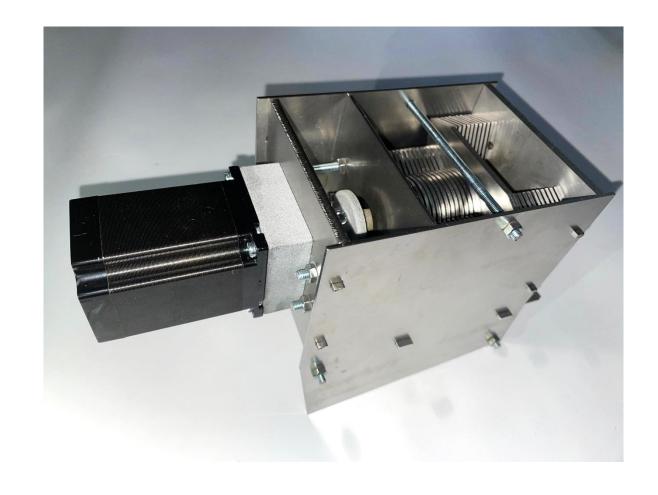
Photos from the field

Settling-thickening tank

Unplanted drying beds

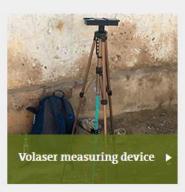
Planted drying beds

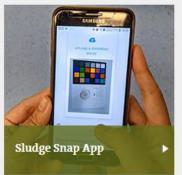
Co-composting



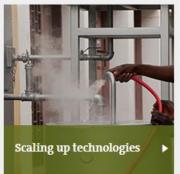
Mechanical dewatering

Waste stabilization ponds


For more information...


Management of Excreta, Wastewater and Sludge

Ongoing Research Projects



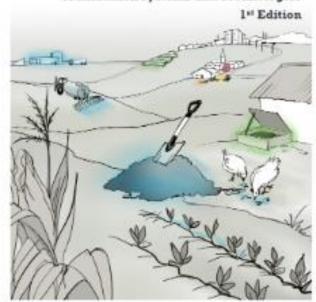
www.sandec.ch/mews

Useful Resource

Compendium of Sanitation Systems and Technologies

sandec.ch/compendium

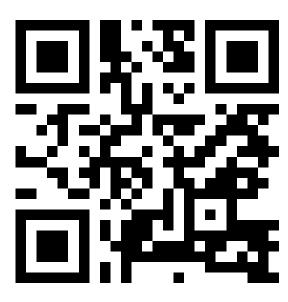
Resource Recovery


Guide to Sanitation Resource Recovery Products & Technologies

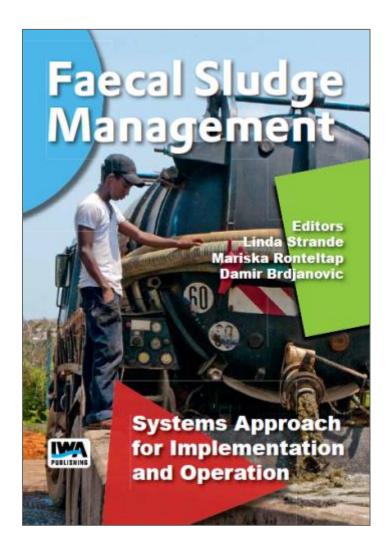
https://www.susana.org/en/knowledgehub/resources-andpublications/library/details/4008#

Guide to Sanitation Resource Recovery Products & Technologies

A supplement to the Compendium of Sanitation Systems and Technologies



Useful resource

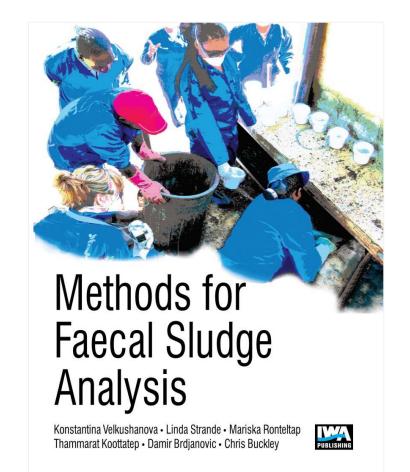


Overview of anything FSM Including:

- Characteristics
- Treatment technologies
- Planning
- Enabling environment
- Systems approach

www.sandec.ch/fsm_book

Useful resource


Guidelines for standard practices

Including:

- Background info on types of faecal sludge
- Methods for sample collection
- Health and safety procedures for handling
- Approach for estimating quantities & qualities on community to city-wide scale
- Laboratory methods for faecal sludge analysis

www.sandec.ch/fsm_methods

Thank you for your attention!